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where Ck are arbitrary constants. Substituting into the integral equation (2.17) for n = 0 
the value of r,,(q) defined by (3.7), taking into account that fo’(r)= 0 and that the integral 
on the left is some constant for any cp E I-- 8,01, in particular for cp = 0, we have the con- 

dition for obtaining the constant Co. Fram this we have 

(3.8) 

where k(9) is defined by Eq.(2.18). 
The constants Cx (k = 1, 2, . ..) can be obtained using the first condition (2.16). 
Note that when the functions vr(E) and gk(z) are odd, the integral equations (2.17) can 

also be reduced to the singular equation (3.5) using the second of formulas (3.3). 
The method of homogeneous solutions, described in Sect.2, can also be used to investigate 

the contact problem of the pressing of a stamp into a cylindrical surface of a ring sector, 
when the surfaces Icp 1 = y are free of tangential stresses and normal displacements. 
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VIBRATION OF A CYLINDER ON AN ELASTIC LAYER 
PARTLY FIXED TO A RIGID BASE* 

S.P. PEL'TS 

The problem of non-resonant harmonic oscillations of an elastic cylinder 
on an elastic layer is considered. The contact between the cylinder and 
the layer is over a circular region Q1 of radius R, without friction. The 
layer rests on a rigid base. At the layer-base interface there are two 
types of contact: in the circular region Q, of radius R, there is rigid 
adherence, while outside it there is no friction. The length of the 
projection of the distance between the centres of regions 9, and R, on 
the horizontal plane is d. Problems of this kind are encountered in flaw 
detection in foundations and adhesive joints. 

Problems of the vibration of a rigid body (stamp) on the surface of an elastic layer 
under various contact conditions were considered in /l/. Bere the stamp is replaced by an 
elastic cylinder, which leads to a qualitatively new mechanical system that takes into account 
the effect of the finite elastic body. A many-sided analysis of the cylinder harmonic oscil- 
lations is given in /2/. 

1. We combine the cylinder axis with the I; axis and locate the origin of coordinates on 
the upper face of the layer. All quantities relating to the cylinder will be denoted by the 
subscript 1, and those relating to the layer by the subscript 2;k,,,k,p,,(n = 1.2) are the 
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Lame coefficients and the density of the material, H is the cylinder height and h the layer 
thickness. On the upper end surface of the cylinder there are no tangential stresses and the 
displacements vary as &(p,a, t)== w"eier. The lateralsurface of the cylinder is free of 
stresses. We will change to dimensionless quantities 

r = h-lp, z = h-It, h, = h-Vi, w* = h-lw', b = h-V, a, = h-l&, (n = 1,2) 

The solution for the cylinder is constructed in the form of a series in the homogeneous 
solutions of the problem of the vibration of an infinite cylinder with a free lateral surface 
/3/. We expand the displacements and stresses in Fourier series in the angular coordinate (p, 
and ignoring the time factor, obtain 

(1.1) 

where C,k are constants to be determined, sk* are the roots of the dispersion equation for an 
infinite cylinder, and U,(r, k), V, (r, k), W,(r,k) are known functions, which owing to their 
complexity are not given here. The expressions obtained for the displacements (1.1) enable us 
to satisfy the boundary conditions on the top face of the cylinder. 

2. Let us obtain a solution of the layer problem. Ignoring the term e-set we write the 
boundary conditions as 

u&l) (r, 0, cp) = a,(‘) (r, 0, cp), 7,P (r, 0, 9) = 7&) (r, 0, cp)=O (2.1) 

(r, v E 01) 

da) (r, -1, cp) = da) (r, -1, cp) = 0 (r, cp E 4) 

da) (r, -1, cp) = Q) (r, -1, 9) = 0 (r, cp P4) 

w(*) (r, -l,cp)=O (O,(r<=,O,<cp<2n) 

~11 the components of the stress and displacement tensors can be represented in the form 
of Fourier series 

@(r,s, cp) = mj_ -@, (r,s) e'q, ~8’ (r,s, cp) = m$_uC (rrs)eimq (s= - 1,O; k= I,& 3) 

T* zz r!:‘, 67) $) E p tpaeu(r, ( 

(9) (I) 
91 u, s p, up’ s c’(P), (1) us E w(l) 

Applying the two-dimensional Fourier integral transform to the Lam& equations and using 
the boundary conditions (2.11, we obtain formulas defining the displacements of the points of 
the layer. Then equating the values obtained for the displacements on the lower face, of the 
layer surface to the known boundary conditions in the region !&,, we obtain an integralequation 
of the first kind for the contact stresses in hz, 

is S,(ar)K(m)S,(cr~)q,(n,~,s,~)padad~-f,(a, pIslr) (2.2) 

:O",C r < u(; n = 1, 2; s = I, 2, . . .; m, p I 0, *l, *2, . ..) 

q,,,(r)==(glm(r). qh(r))=~~,~,(-l)-+IC,'b~ql 

(s,p,s, r) 

qIm (r) 5 z?A (r, - 1) + i~i$ (r, - I), ganr (r) = $L (r, - 1) - d% (r, - 1) 

f, (n, P, s, r) = &-I (n, P- 3, d, /,+I kh p, sv r)) 

where b,,d are known constants, S, (err) is a diagonal matrix with elements J,,,-_l(ar), Jmcl(ur), 
J,(z) are Bessel functions, and H':'(z) are Hankel functions. The elements of the matrix 

K(a) are defined by the relations 
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hd4 = k2 (4 = Nl (4 t Nz (~4 k12 (4 = b, (a) = N, (a) - N, (a) 

N, (a) A (a) = s, (4~’ + baa) ch s1 ch s, - aa (4slspp + s,-lb,Z) x sh s, sh se - 4aSstb, 

Ne (a) = szml cth s,, A (a) = b,l[b,*ch s1 sh s, - 4s,s, u* X sh s1 ch ~~1 

sk ’ = a* - bk2 (k = 1, 2); blZ = pz (oh)* (A, + 211-&-l, be_” = 
= pz (c~h)*~~-‘, b, = 2aa - b,l 

Im*1 h Pt sv e =&%nlw , s, 4 J,w (4 ada 

%, (n, P, s, Co = ai (a) J,, tab) Mp (a, ~~3 

’ *jp = rja - npaa, rll = p1 (Oh)* (A1 + 2p$‘, r*’ = p1 (oh)‘pl-1 

R (a) = bS1 [b, sh st - 2s1s1 shql A-l(a) 

As a -WOO the elaments of matrix K (a) behave as O(ja 1-l). The unique solvability of Eq. 

(2.2) was established in /4/ in the case of asymptotic forms of this kind. 
A method of solving (2.2) was devised in /l/. The disposition of the contour u is dict- 

ated by the principle of limit absorption (damping). Following /l/ we obtain 

qm tn. P, s, d - 1 S, (~4 K-’ (a) A, (n, P, s, a) ada + 
0 

(2.3) 

A, tn, P, s, a) = (1, -1) % tn, P, s, a) 

We assume that the factorization K(a)= K_(a)K+(a) is carried out. The vector function 
X, (n,p,s,a) is determined from the equation of the second kind 

X,(n,p,s,4+& K, (4 0, (a, 4 K;’ (4 x 

Xt;l(n,p,s, u)$$= 
ss 

xlrn (a) K, (a) 8 On, a. u, ha) x 
.o 

K-l (u) A, (n, p, s, u) $$- @>r>r_) 

(2.4) 

The contour r_ lies below r, but such that between them the integrands are regular. 
The following notation is used here: 

8 (m,a,u,a)is a second-order diagonal matrix with elements 

On = IaJ,+ (ua) H$? (au) - uJ, (uu)H$& (~a)1 (a2 - us)+ 

8,, = IuJ, (w)Hi,$, (au) - aJ,,,+l (w)H~’ (aa)l(a* - ~9)~~ 

D, (a, u) = ~lrn (a) 0 (m, a, u, aa)xrm (a) - (a - u)” E 

where E is the unit matrix. Equation (2.4) is effectively solved by simultaneous deformation 
of the contours r and r_ into the lower half plane. Calculating the residues of the integrands 
at the poles intersected by the deformed contours, and neglecting small integral terms, we 
reduce the solution of the equation to the solution of a finite set of linear algebraic equa- 
tions. Approximate factorization of the matrix-function K(a) is carried out on by 
approximating it by a matrix with rational-fractional elements. The error of the approximate 
solution is estimated using Theorem 2 of /4/. 

The displacements of the points of the upper face of the layer are given by the formula 

(2.5) 
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Jm WI Jm-I wJ)[Jl+l (us) Qll (n. Pv s* P) - 

JI-I 044 ei h P, s, PII updu dp> (0 Q r < OQ), 8 3 rl/b 

P, (a) = - b,‘sl sh s,sh s,, P,(a) A (a) = - ab3 X 

[tIs,sh s1 - 0,5 b, sh s,l 

where the first integral term takes into account the effect of the cylinder, and the second 
the presence of rigid adherence at the lower face of the layer. Let us represent the first 
term in the form of a series in residues 

(2.61 

(2.7) 

where At,-, B,“‘,Dk,““’ are constants. The number of standing waves under the cylinder and their 
characteristics therefore depend on all the parameters of the layer and the cylinder. However a 
the numbsr of waves propagating from the cylinder is equal to the number of real roots yk, 
and their phase velocities depend only on the layer parameters. The effect of the cylinder 
characteristics appears in their 
to determining the constants 6 . 

amplitude and phase shift. The problem has thus been reduced 

3. Formulas of generalized orthogonality were obtained in /5/ for the dynamically homo- 
geneous solutions of a cylinder, which in a cylindrical coordinate system have the form 

(uj (rr -k), d$ (r, 4) -I- & (VI (r, -k), $ (r, k)) - (u$) (r, k), W, (r, -k)) = Ryi “I #= “P 
1 1 nakr - dp 

(3.1) 

The stresses ~,dl), ~~(~1, u,,(') are calculated using (1.1). We will satisfy the boundary 

conditions on the lower face of the cylinder 

IO(') (r, 0, 9) = Lu(I) (r, 0, v), 

(r, cp E %) 

z,,(‘) (r, 0, cp) = 7# (r, 0, cp) = 0 

As a result we obtain the following set of equations 

(I- 6,)w* - z, C.“W. (r. 4 te nk&hl - IJ (k 4 pp 4 (3.2) 

,a1 C,“T!? (r, 4 tg +,A = 0 

6, ~~~C,k~~'(r,k)tgnr*~l =O 

(0 < r Q aI, k = 0, &I, f2, . . .) 

where&(&&r), L,(k,s,p,r)are known functions. Applying to (3.2) the relation of generalized 
orthogonality, we obtain 

(3.3) 

F1 (s. 1. k) R," = - j, $ b&b;k j PI@) Mk (4 d) Mk @, ‘dd udu (3.4) 



649 

In formulas (3.4) and (3.5) we change to new variables of integration, using thesubstit- 
ution n = (y* + It2 + l2 + ss)'/*. Here the radical is defined in the Riemannian plane with a 

slit which joins the points &i(P -I- le + s')"', under the condition of positiveness when y> 0. 
Let us consider system (3.3) as an operator equation in space i2. The asymptotic 

estimates of the coefficients of the system and the substitution carried out above imply the 
convergence of the series 

Hence (3.3) generates in 1, an absolutely continuous operator /6/, and the infinite 
system is uniquely solvable for all oscillation frequencies different from the natural freq- 
uencies of a mechanical system. The infinite system can be solved by the method of reduction, 
and the solutions of the abbreviated systems approach the exact solution when the order is 
increased. 

The properties of the contact stress singularities in the neighbourhood of the region 4 
are established by using the method described in /7/ 

eJ1) (r, 0, cp) = (a, - r)Yu (r, 0 cp), y = 1 - a (0 <a < 1) 

where c (r,O,cp) is a regular function and a is the root of equation 

2e(l - Y*)(1 - v$l 
@ 

-sins -% eeean.- singan- 

and vlr v1 are Poisson's ratios. 
At the boundary of the contact spot R, the contact stresses have the form /l/ 

$2 (r, -1) = (as - r)+ [r,& sin h (r) + plr COS h (r)] 
(r “as; n = 4, 2) a (r) s A In I(a, + r) (a, - r)+] 

where A,r,,k,p,,k are constants. 
Setting b = 0 everywhere we obtain the solution for the axisymmetric initial problem. 

Passing to the limit as Ma'oQ, we obtain the solution of the problem of the vibration of 
a cylinder on a rigid base. 

For a numerical analysis we will select the case corresponding to b = a, = O,pl = p,= p. 
We obtain the axisymmetric problem of the vibration of a cylinder on an elastic layer whose 
lower face is fixed at a single point to a rigid base. Owing to the axial symmetry the rigid 
adherence at a 
that the lower 

single point does not affect the solution of the problem, i.e. we can assume 
face of the elastic layer is in frictionless contact with the rigid base. 

This problem may be considered as a standard for comparing the effects, and 
enables us to separate the effects due to the presence of a region of rigid 
adherence a,. In the case considered here the infinite algebraic system 
(3.3) is simplified due to the absence of terms generated by the region 0,. 
System (3.3) was solved using the method of reduction. The calculations 
were carried out for v1=vw Pl’PW k = 2,w*=O,OO1, a, 4, bra = 5. Curves of 
dimensionless contact stresses u = ~.l-'u,(').l(r are shown in Fig. 1, where the 
real part is represented by the solid curve and the imaginary by the dashed 
curve. The presence of a zone of negative stresses is explained by the fact 
that only the dynamic component of the problem is considered. The complete 
problem must take into account the static load of the cylinder which presses 
it into the layer, preventing the formation of a separation zone. The gen- 
eral solution is the sum of the static and dynamic solutions. The solution 
of the static problem is obtained from the dynamic one as 0 +o. 

The author thanks V.A. Babeshko for his interest and advice. 
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DESIGN OF CIRCULAR CYLINDRICAL SHELLS OF MINIMUM WEIGHT 
WITH FIXED NATURAL OSCILLATION FREQUENCIES* 

A.S. BRATUS' 

Approximate solutions are obtained , using asymptotic methods, of the 
problem of the optimum design of cylindrical shells of variable thickness, 
of minimum weight for fixed natural oscillation frequencies in the axis- 
ymmetric and non-axisymmetric cases. Qualitative patterns of the thickness 
distribution for optimum solutions are obtained and analyzed. 

1. Basic equations. Consider the natural oscillations of a circular cylindrical 
shell of variable thickness. We assume that the mean surface is specified in curvilinear 
coordinates x and a in such a way that the first quadratic form has the form R=(cW + dd), 
where R is the radius of the circular cylindrical shell, x varies along the generatrix, and 
a is an angular coordinate that varies in the transverse direction. We shall consider shells 

with straight cutoffs, that, in dimensionless variables (5, a), occupy the rectangular region. 

D = {x, a : 0 < x < k, 0 < a Q a, < 2x}, k = LIR 

where 1 is the shell length. 
The set of equations in displacements, which determines the natural oscillations of a 

circular cylindrical shell of variable thickness h (x, a) can be expressed (e.g., /l/j in the 
form 

(1.1) 


